Virtual Memory
(Real Memory POV)

Computer Systems Chapter 9.1 - 9.6

Binghamton CS-220

University Spring 2016

Process Resources

* Each process THINKS it owns all machine resources

« “virtual” processor, virtual memory, virtual keyboard, virtual monitor,
virtual disks, virtual network, ...

 OS connects VIRTUAL resources to REAL resources

. . . '

Binghamton CS-220
University Spring 2016

Time Slicing

PID 5321

PID 4879

PID 4472

Swap Out

Binghamton CS-220

University Spring 2016

Swapping Memory

Bad Idea:
Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

* A 32 bitaddress space is 4G

* Writing 4G to disk takes ~1G/sec or 4 seconds

* Times slices are MUCH smaller than 1 second

* You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton CS-220

University Spring 2016

Process Attributes

* Logical Control Flow
* A process executes instructions
* EIP points to the next instruction to execute

 After an instruction is fetched, EIP points to the next sequential
instruction

 Control flow instructions modify EIP (jump, call, ret, etc.)

* Address Space
* Memory starting at address 0x0000 0000 up to OxFFFF FFFF
* Contains OS, Code, Heap, Stack, bss, global data, shared libraries, etc.

* Registers / Register Values
* O resources

Binghamton CS-220

University Spring 2016

Abstract View

All memory is equally available;

[can address a single byte of memory using an address, which is
just anumber between 0 and 237 - 1

2 26 |25 2+ 23 22 (2t |20
by, by .. b, b, b, b, b, b, b,

CS-220
Spring 2016

Binghamton

University

Pages

* A book consists of many pages
* Each page can contain a fixed amount of text
* Each page has a page number

* You can think of the book as a list
of pages

Binghamton CS-220

University

Spring 2016

Pages of Memory

* A virtual address space consists of many pages of memory
* Each page contains a fixed amount of data

* Each page has a page “number” or page ID

* You can think of an address space as a list of pages

Binghamton CS-220

University Spring 2016
X86 Stack Memory o
Address | Value . :
xftff fffc

xffff fff8 x0000 0004

xffff fff4 —— xffff fff4 x0000 0003

xftff fff0
%esp points at X111 frec
bottom of stack
* Memory above %esp is in use
 Memory below %esp is available
x0000 0004

x0000 0000

Binghamton CS-220

University Spring 2016

Memory Pages Mermory

Page Address Value
xftff fffc

xffff fff8 | x0000 0004
xffff fff4 | x0000 0003

| e
Each page is 4K = 4096 bytes long FFFF ffoc

4096=217
12 bits is 3 hex digits

xffff e

x0000 0004
x0000 0000

x00000

CS-220
Spring 2016

Binghamton

University

Project 2 "Warehouse” terminology

* Each page of memory is like a bin in a warehouse
* Each bin contains a fixed number of bytes (4096)
* To get to a specific byte, first go to the bin in the warehouse

Binghamton CS-220

University Spring 2016
Page Addresses Memory
0x003001
 We can divide an address into sub-fields 0x003000
0x002FFF p
EAED N E O EL M e P = a
b;; by b;; by by b, b; b, 8
Page ID Page Offset 0x002001 - ;
0x002000 [N
. 1. . 0x001FFF P
* Equivalent to dividing memory into chunks i .
°] — 212 — = &
Chunk-51ze 2 4K = 4096 N 0x001001 :
* Offsetin 4K represented by 3 hex digits 02001000 1

* For 32 bitaddressing, Page ID is 5 hex digits 0x000FFF [N

S @ 09 © U

Binghamton CS-220

University Spring 2016

Example Address Fields

11111111111 11111110100O0O0O0O0111100O0
F F F F D 0 3 C

Memory Address: OXFFFF D0O3C
Page: OXFFFF D
Page Offset: 0x03C

Binghamton CS-220

University Spring 2016

Address Space/Warehouse
page FFFF F

page 0000 4 » List of pages

* Topis page OxFFFF F
* Bottom is page 0x0000 0

page 0000 3
page 0000 2
page 0000 1

page 0000 0

Binghamton CS-220

University Spring 2016

Real Memory / Workbench

e Actual RAM in hardware

* Array of Page Slots

* Each slotis one page (4K) big
* Typically, << slots than pages

slotn

slot 2

slot 1

slot O

Binghamton CS-220

University Spring 2016

Page Swap In / Get bin from warehouse

page FFFF F

Copy a page from
address space into real
memory slotn
page 0000 4
page 0000 3
page 0000 3 slot 2

page 0000 2

slot 1
page 0000 1

slot O

page 0000 0

Binghamton CS-220

University Spring 2016

Page Table

00003 2

page FEFEE Track which pages are
in which slots

slotn
page 0000 4 Updated when

PageSwap In occurs

page 0000 3

slot 2
page 0000 2

slot 1
page 0000 1

slot 0
page 0000 0

Binghamton CS-220
University Spring 2016

Virtual Memory Shell Game

0000 3 2

Physical
Memory Address

Management <
Unit

b

bl 0

Virtual
Address

20 [0 |z lon [0 | 1o
by; by .. by by by b
Page ID

et (w2 [L2 o
r r . b

m-1 m-2 - T12 11

20 . (22 |2t 20
b, .. b, by b,
Real Page Slot Page Offset

2
Page Offset

Page Fault

Binghamton CS-220

University Spring 2016

Page Fault — Page not in Page Table!

0000 3 2

Virtual Address

Physical
Memory Address

Management >
Unit

F F F F
Page ID

Page Fault

Binghamton CS-220

University Spring 2016

Page Fault — bin not on workbench

* Signals a page fault interrupt to the process/instruction
requesting that address

* Process goes idle until page fault is resolved

* OS swaps page in to get that page into real memory
* Swap In updates the page table

* Signals “resume” when swap in is complete

* Process again becomes active

* Processing resumes with the currently executing instruction!
* Currentinstruction had not yet completed.

Binghamton CS-220

University Spring 2016

Swap In

00003 2
FFFF D 1
page FEEEF Copy new page to real
memory and
update page table slot n
page 0000 4
page 0000 3
slot 2
page 0000 2
slot 1
page 0000 1
slot 0
page 0000 0

Binghamton CS-220

University Spring 2016

Swap In Complete

0000 3 2
FFFFD 1

Virtual Address Physical Address

Memory
Management
Unit

F F F F D
Page ID

Page Fault

Binghamton CS-220

University Spring 2016

Virtual Memory Shell Game

0000 3 2
FFFF D 1

Virtual Address

Physical Address
Memory

Management
Unit

F F F F D 0 3 C
Page ID

O 0 O 1 0 3 C

Page Slot Offset

The address you
THINK you are using

The address in
hardware

Binghamton CS-220

University Spring 2016
Memory Write
0000 3 2 0
FFFF D 1 1

page FFFF F movb $12,0xFFFD03C

-

movb $12,0x000103C

slotn
page 0000 4

page 0000 3

slot 2
page 0000 2

slot 1
page 0000 1

slot O

page 0000 0

Binghamton CS-220

University Spring 2016

Page Table Dirty Bit

* Keeps track of whether the page in real memory is exactly the
same as the page in virtual memory

* As soon as we write to memory in a page, that page becomes dirty

Binghamton CS-220

University Spring 2016

Eventually All Slots are Filled

page FFFF F ggl(?)l(?) ; 1 1
page 0000 4 slotn
page 0000 3

page 0000 2 slot 2
page 0000 1 slot 1
page 0000 0 slot

Binghamton CS-220

University Spring 2016

Page Fault — Page not in Page Table!

0000 3

FFFF D 1

Virtual Address

Physical
Memory Address

Management >
Unit

F F F E
Page ID

Page Fault

CS-220
Spring 2016

Binghamton

University

Page Swap Out / Workbench is full

* Need to make room in real memory for a new slot

* Need to choose a “victim”... a page already in a real memory slot
that can be sacrificed

* Victim Choice is the MOST important algorithm in terms of

* Don’t swap out the page that the next instruction needs!

* If a real memory slot is dirty, need to update virtual memory with
updated contents

Binghamton CS-220

University Spring 2016

Page Ejection Algorithms

* How do we choose which page to swap out?
* Don’t want to swap out a page we are about to use again!
* Hard to predict what future memory requests will be.

* Locality
* Future memory requests will be near current memory requests
* Future memory requests will be near recent memory requests

* Least Recently Used (LRU)
* Eject the page referenced the longest time ago
* True LRU is expensive (updated every memory access)
 Random - cheap but often causes higher miss rate

CS-220

Binghamton
Spring 2016

University

Random Page Ejections

* Throw out a page chosen at random

* Cheap to implement

* Probability of selecting the best page is 1/#slots

* Probability of selecting the worst page is 1/#slots

Binghamton CS-220

University

Page Ejection by “era’

Spring 2016

 When a page is referenced, set “touched” to true

* When a page ejection is required
* Find first page for which “touched” is false
* If no such pages exist, set all pages “touched” flag to false (new “era”)

* Advantages / Disadvantages

 Relatively cheap and fast
* Occasionally (once an era) requires reset (Full page table update)

* Early in the era, occasional “bad” choice
e Late in the era, close to LRU
e Cheap version of LRU

CS-220
Spring 2016

Binghamton

University

Linked List LRU

* Each page table entry has a “next” and “prev” pointer
At memory reference, put page table entry at list head
» At page ejection time, eject page at list tail

* Advantages / Disadvantages
* Requires list update on every memory reference (expensive)
» Allows search of page table in LRU order (head to tail)
* True LRU algorithm - best theoretical hit rates

Binghamton CS-220

University Spring 2016

Paging Performance

e Virtual memory usually kept on disk

* Reading from disk is about 100x slower than reading from RAM
* Every Page Swap requires disk read (and maybe write)

* Performance depends on # Page Faults / time

* Typically measured as “Page Hit Rate”

Memory Access in Real Memory
Memory Accesses

Page Hit Rate =

CS-220

Binghamton
Spring 2016

University

Page Hit Rate

 Often achieve page hit rate of 99.99+%

* The higher the page hit rate, the closer virtual memory speeds are
to real memory speeds

* If the page hit rate gets too slow, we start “thrashing”
* Spend more time swapping pages in and out than doing real work

* The more real memory, (more page slots) the higher the page hit
rate.

Binghamton CS-220

University Spring 2016

Page Hit Rates — Reading Code

* For instructions
* Most instruction fetch is just a couple of bytes from previous %eip

* If the average instruction length is 4 bytes, page fault for every 1K
instructions for sequential code

 Branches

* Local branches... branches to locations within the page

* Ifloop around 50% of your code, and execute 100 times, then page fault every 50K+
instructions

* Far branches... branches outside the page
* Cause page fault
* Very rare

Binghamton CS-220

University Spring 2016

Page Hit Rate — Stack Space

* Function references local data, and parameters in stack frame or
nearby stack frame

 Stack frame most likely in a single page or at least a small set of
pages

* Compiler rounds stack to even boundary to ensure single page

* Stack frame page(s) swapped in when function starts (or already
there if there is room in the prev. frame’s page)

* Sometimes get a page miss when function is called
* Page misses very rare otherwise!

Binghamton CS-220

University Spring 2016

Page Hit Rate — Heap Space

* Much more likely to get page misses on dynamically allocated
memory
* Dynamically allocated memory is often larger than local variables

* No guarantee that dynamically allocated memory is near other
dynamically allocated memory

Binghamton

CS-220

University

Why Virtual Memory?

Spring 2016

* Enables very large virtual address spaces
* RAM is expensive
* Disk space is cheap

 Ena
 Ena
e Enal
 Ena

 Enal

D.

es “sleep” mode (write dirty pages, and empty real memory)

les per-page Memory Protection (Permissions in page table)
les “‘memory mapped” IO (more later)

es independent virtual address space for each process

D
D
D]
D

les fast process swap in / swap out (more later)

