
Binghamton

University

CS-220

Spring 2016

Virtual Memory
(Real Memory POV)

Computer Systems Chapter 9.1 - 9.6

Binghamton

University

CS-220

Spring 2016

Process Resources

• Each process THINKS it owns all machine resources
• “virtual” processor, virtual memory, virtual keyboard, virtual monitor,

virtual disks, virtual network, …

• OS connects VIRTUAL resources to REAL resources

PID 4879

Processor

Memory

Disk

Monitor

PID 5321PID 4472

Binghamton

University

CS-220

Spring 2016

Time Slicing

PID 4879

Processor

Memory

Disk

Monitor

PID 5321

PID 4472

Swap In

Swap Out

Binghamton

University

CS-220

Spring 2016

Swapping Memory
Bad Idea:

Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

• A 32 bit address space is 4G

• Writing 4G to disk takes ~1G/sec or 4 seconds

• Times slices are MUCH smaller than 1 second

• You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton

University

CS-220

Spring 2016

Process Attributes

• Logical Control Flow
• A process executes instructions
• EIP points to the next instruction to execute
• After an instruction is fetched, EIP points to the next sequential

instruction
• Control flow instructions modify EIP (jump, call, ret, etc.)

• Address Space
• Memory starting at address 0x0000 0000 up to 0xFFFF FFFF
• Contains OS, Code, Heap, Stack, bss, global data, shared libraries, etc.

• Registers / Register Values

• IO resources

Binghamton

University

CS-220

Spring 2016

Abstract View

All memory is equally available;

I can address a single byte of memory using an address, which is
just a number between 0 and 232 - 1

231 230 … 26 25 24 23 22 21 20

b31 b30 … b6 b5 b4 b3 b2 b1 b0

Binghamton

University

CS-220

Spring 2016

Pages

• A book consists of many pages

• Each page can contain a fixed amount of text

• Each page has a page number

• You can think of the book as a list
of pages

Binghamton

University

CS-220

Spring 2016

Pages of Memory

• A virtual address space consists of many pages of memory

• Each page contains a fixed amount of data

• Each page has a page “number” or page ID

• You can think of an address space as a list of pages

Binghamton

University

CS-220

Spring 2016

x86 Stack Memory

Address Value

xffff fffc

xffff fff8 x0000 0004

xffff fff4 x0000 0003

xffff fff0

xffff ffec

x0000 0004

x0000 0000

%esp

xffff fff4

%esp points at
bottom of stack

Top of stack at
high memory

• Memory above %esp is in use
• Memory below %esp is available

Binghamton

University

CS-220

Spring 2016

Memory Pages Memory

Page Address Value

xffff f

xffff fffc

xffff fff8 x0000 0004

xffff fff4 x0000 0003

xffff fff0

xffff ffec

xffff e

x0000 0
x0000 0004

x0000 0000

Each page is 4K = 4096 bytes long
4096=212

12 bits is 3 hex digits

Binghamton

University

CS-220

Spring 2016

Project 2 “Warehouse” terminology

• Each page of memory is like a bin in a warehouse

• Each bin contains a fixed number of bytes (4096)

• To get to a specific byte, first go to the bin in the warehouse
• Then go to the specific place in that bin to find the byte(s) you need

Binghamton

University

CS-220

Spring 2016

Page Addresses

• We can divide an address into sub-fields

• Equivalent to dividing memory into chunks
• Chunk size = 212 = 4K = 4096

• Offset in 4K represented by 3 hex digits

• For 32 bit addressing, Page ID is 5 hex digits

231 230 … 212 211 210 … 22 21 20

b31 b30 … b12 b11 b10 … b2 b1 b0

Page ID Page Offset

Memory

…

…

0x003001

0x003000

0x002FFF P

a

g

e

2

…

0x002001

0x002000

0x001FFF P

a

g

e

1

…

0x001001

0x001000

0x000FFF P

a

g

e

0

…

0x000001

0x000000

Binghamton

University

CS-220

Spring 2016

Example Address Fields

ADDRESS

PAGE ID PAGE OFFSET

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0

F F F F D 0 3 C

Memory Address: 0xFFFF D03C
Page: 0xFFFF D

Page Offset: 0x03C

Binghamton

University

CS-220

Spring 2016

Address Space/Warehouse

• List of pages
• Top is page 0xFFFF F
• Bottom is page 0x0000 0

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Binghamton

University

CS-220

Spring 2016

Real Memory / Workbench

slot n

..
…

slot 2

slot 1

slot 0

• Actual RAM in hardware
• Array of Page Slots
• Each slot is one page (4K) big
• Typically, << slots than pages

Binghamton

University

CS-220

Spring 2016

Page Swap In / Get bin from warehouse

slot n

..
…

slot 2

slot 1

slot 0

Copy a page from
address space into real

memory

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

page 0000 3

Binghamton

University

CS-220

Spring 2016

Page Table

slot n

..
…

slot 2

slot 1

slot 0

Track which pages are
in which slots

Updated when
PageSwap In occurs

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Page Slot

0000 3 2

Binghamton

University

CS-220

Spring 2016

Virtual Memory Shell Game

Memory
Management
Unit

Virtual
Address

Physical
Address

231 230 … 212 211 210 … 22 21 20

b31 b30 … b12 b11 b10 … b2 b1 b0

Page ID Page Offset

2m-1 2m-2 … 212 211 210 … 22 21 20

rm-1 rm-2 … r12 b11 b10 … b2 b1 b0

Real Page Slot Page Offset

Page Fault

Page Slot

0000 3 2

Binghamton

University

CS-220

Spring 2016

Page Fault – Page not in Page Table!

Memory
Management
Unit

Virtual Address
Physical
AddressF F F F D 0 3 C

Page ID Offset

Page Fault

Page Slot

0000 3 2

Binghamton

University

CS-220

Spring 2016

Page Fault – bin not on workbench

• Signals a page fault interrupt to the process/instruction
requesting that address

• Process goes idle until page fault is resolved

• OS swaps page in to get that page into real memory

• Swap In updates the page table

• Signals “resume” when swap in is complete

• Process again becomes active

• Processing resumes with the currently executing instruction!
• Current instruction had not yet completed.

Binghamton

University

CS-220

Spring 2016

Swap In

slot n

..
…

slot 2

slot 1

slot 0

Copy new page to real
memory and

update page table

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Page Slot

0000 3 2

FFFF D 1

Binghamton

University

CS-220

Spring 2016

Swap In Complete

Memory
Management
Unit

Virtual Address Physical Address

F F F F D 0 3 C

Page ID Offset

Page Fault

Page Slot

0000 3 2

FFFF D 1

Binghamton

University

CS-220

Spring 2016

Virtual Memory Shell Game

Memory
Management
Unit

Virtual Address Physical Address

F F F F D 0 3 C

Page ID Offset

0 0 0 1 0 3 C

Page Slot Offset

Page Slot

0000 3 2

FFFF D 1

The address you
THINK you are using

The address in
hardware

Binghamton

University

CS-220

Spring 2016

Memory Write

slot n

..
…

slot 2

slot 1

slot 0

movb $12,0xFFFD03C
page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Page Slot Dirty

0000 3 2 0

FFFF D 1

0C

MMU

movb $12,0x000103C

1

Binghamton

University

CS-220

Spring 2016

Page Table Dirty Bit

• Keeps track of whether the page in real memory is exactly the
same as the page in virtual memory

• As soon as we write to memory in a page, that page becomes dirty

Binghamton

University

CS-220

Spring 2016

Eventually All Slots are Filled

slot n

..
…

slot 2

slot 1

slot 0

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Page Slot Dirty

0000 3 2 0

FFFF D 1 1

… … …

0C

Binghamton

University

CS-220

Spring 2016

Page Fault – Page not in Page Table!

Memory
Management
Unit

Virtual Address
Physical
AddressF F F E 8 0 F 0

Page ID Offset

Page Fault

Page Slot

0000 3 2

FFFF D 1

… …

Binghamton

University

CS-220

Spring 2016

Page Swap Out / Workbench is full

• Need to make room in real memory for a new slot

• Need to choose a “victim”… a page already in a real memory slot
that can be sacrificed

• Victim Choice is the MOST important algorithm in terms of
performance!!!!!!

• Don’t swap out the page that the next instruction needs!

• If a real memory slot is dirty, need to update virtual memory with
updated contents

Binghamton

University

CS-220

Spring 2016

Page Ejection Algorithms

• How do we choose which page to swap out?
• Don’t want to swap out a page we are about to use again!

• Hard to predict what future memory requests will be.

• Locality
• Future memory requests will be near current memory requests

• Future memory requests will be near recent memory requests

• Least Recently Used (LRU)
• Eject the page referenced the longest time ago

• True LRU is expensive (updated every memory access)

• Random – cheap but often causes higher miss rate

Binghamton

University

CS-220

Spring 2016

Random Page Ejections

• Throw out a page chosen at random

• Cheap to implement

• Probability of selecting the best page is 1/#slots

• Probability of selecting the worst page is 1/#slots

Binghamton

University

CS-220

Spring 2016

Page Ejection by “era”

• When a page is referenced, set “touched” to true

• When a page ejection is required
• Find first page for which “touched” is false

• If no such pages exist, set all pages “touched” flag to false (new “era”)

• Advantages / Disadvantages
• Relatively cheap and fast

• Occasionally (once an era) requires reset (Full page table update)

• Early in the era, occasional “bad” choice

• Late in the era, close to LRU

• Cheap version of LRU

Binghamton

University

CS-220

Spring 2016

Linked List LRU

• Each page table entry has a “next” and “prev” pointer

• At memory reference, put page table entry at list head

• At page ejection time, eject page at list tail

• Advantages / Disadvantages
• Requires list update on every memory reference (expensive)

• Allows search of page table in LRU order (head to tail)

• True LRU algorithm – best theoretical hit rates

Binghamton

University

CS-220

Spring 2016

Paging Performance

• Virtual memory usually kept on disk

• Reading from disk is about 100x slower than reading from RAM

• Every Page Swap requires disk read (and maybe write)

• Performance depends on # Page Faults / time

• Typically measured as “Page Hit Rate”

𝑃𝑎𝑔𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠 𝑖𝑛 𝑅𝑒𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦

𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠

Binghamton

University

CS-220

Spring 2016

Page Hit Rate

• Often achieve page hit rate of 99.99+%

• The higher the page hit rate, the closer virtual memory speeds are
to real memory speeds

• If the page hit rate gets too slow, we start “thrashing”
• Spend more time swapping pages in and out than doing real work

• The more real memory, (more page slots) the higher the page hit
rate.

Binghamton

University

CS-220

Spring 2016

Page Hit Rates – Reading Code

• For instructions
• Most instruction fetch is just a couple of bytes from previous %eip

• If the average instruction length is 4 bytes, page fault for every 1K
instructions for sequential code

• Branches
• Local branches… branches to locations within the page

• If loop around 50% of your code, and execute 100 times, then page fault every 50K+
instructions

• Far branches… branches outside the page
• Cause page fault

• Very rare

Binghamton

University

CS-220

Spring 2016

Page Hit Rate – Stack Space

• Function references local data, and parameters in stack frame or
nearby stack frame

• Stack frame most likely in a single page or at least a small set of
pages

• Compiler rounds stack to even boundary to ensure single page

• Stack frame page(s) swapped in when function starts (or already
there if there is room in the prev. frame’s page)

• Sometimes get a page miss when function is called

• Page misses very rare otherwise!

Binghamton

University

CS-220

Spring 2016

Page Hit Rate – Heap Space

• Much more likely to get page misses on dynamically allocated
memory

• Dynamically allocated memory is often larger than local variables

• No guarantee that dynamically allocated memory is near other
dynamically allocated memory

Binghamton

University

CS-220

Spring 2016

Why Virtual Memory?

• Enables very large virtual address spaces
• RAM is expensive

• Disk space is cheap

• Enables “sleep” mode (write dirty pages, and empty real memory)

• Enables per-page Memory Protection (Permissions in page table)

• Enables “memory mapped” IO (more later)

• Enables independent virtual address space for each process

• Enables fast process swap in / swap out (more later)

